Spontaneous Recovery of Fear Reverses Extinction-Induced Excitability of Infralimbic Neurons
نویسندگان
چکیده
In rodents, the infralimbic (IL) region of the medial prefrontal cortex plays a key role in the recall of fear extinction. Previously we showed that fear conditioning decreases the intrinsic excitability of IL neurons, and that fear extinction reverses the depressed excitability. In the current study, we examined the time course of the extinction-induced changes in adolescent rats. Immediately after extinction, IL neurons continued to show depressed excitability. However 4 hours after extinction, IL neurons showed an increase in evoked spikes that correlated with a reduced fast afterhyperpolarizing potential. This suggests that acquisition of fear extinction induces an increase in spike firing 4 hours later, during the consolidation of extinction. We also examined IL excitability in a group of rats that showed spontaneous recovery of fear 17 days after extinction (SR group). Similar to neurons after fear conditioning, IL neurons from the SR group showed depressed intrinsic excitability compared to neurons 4 hours after extinction, suggesting that extinction-induced enhancement in intrinsic excitability decreases with time reverting back to a depressed state. These results suggest that plasticity in IL contributes to the spontaneous recovery of fear and preventing this depression of IL excitability could prolong fear extinction.
منابع مشابه
Fear conditioning and extinction differentially modify the intrinsic excitability of infralimbic neurons.
Extinction of conditioned fear is an active learning process involving inhibition of fear expression. It has been proposed that fear extinction potentiates neurons in the infralimbic (IL) prefrontal cortex, but the cellular mechanisms underlying this potentiation remain unknown. It is also not known whether this potentiation occurs locally in IL neurons as opposed to IL afferents. To determine ...
متن کاملFear extinction induces mGluR5-mediated synaptic and intrinsic plasticity in infralimbic neurons.
Studies suggest that plasticity in the infralimbic prefrontal cortex (IL) in rodents and its homolog in humans is necessary for inhibition of fear during the recall of fear extinction. The recall of extinction is impaired by locally blocking metabotropic glutamate receptor type 5 (mGluR5) activation in IL during extinction training. This finding suggests that mGluR5 stimulation may lead to IL p...
متن کاملModulating fear extinction memory by manipulating SK potassium channels in the infralimbic cortex
Fear extinction correlates with increased infralimbic (IL) neuronal excitability. Since small conductance Ca(2+)-dependent K(+) (SK) channels modulate neuronal excitability and certain types of learning and memory, pharmacological modulation of SK channels could be used to regulate IL excitability and fear extinction. To test this, we first determined the effect of blocking SK channels with apa...
متن کاملRole of Amygdala-Infralimbic Cortex Circuitry in Glucocorticoid-induced Facilitation of Auditory Fear Memory Extinction
Introduction: The basolateral amygdala (BLA) and infralimbic area (IL) of the medial prefrontal cortex (mPFC) are two interconnected brain structures that mediate both fear memory expression and extinction. Besides the well-known role of the BLA in the acquisition and expression of fear memory, projections from IL to BLA inhibit fear expression and have a critical role in fear extinction. Howev...
متن کاملM-type potassium channels modulate the intrinsic excitability of infralimbic neurons and regulate fear expression and extinction.
Growing evidence indicates that the activity of infralimbic prefrontal cortex (IL) is critical for inhibiting inappropriate fear responses following extinction learning. Recently, we showed that fear conditioning and extinction alter the intrinsic excitability and bursting of IL pyramidal neurons in brain slices. IL neurons from Sprague Dawley rats expressing high fear had lower intrinsic excit...
متن کامل